

Next generation downstream process – manufacturing of biologics in a continuous way

Gorazd Hribar, Lek d.d. Technical Development Biosimilars, Technical Research and Development gorazd.hribar@novartis.com

U NOVARTIS

Biologics or biopharmaceuticals

Biopharmaceuticals are part of a broader category of therapeutic agents called biologics

Size and complexity

http://www.azbio.org/small-molecules-large-biologics-and-the-biosimilar-debate

Highly specific and targeted medicines

Produced in living organisms

U NOVARTIS

Technical Research & Development

© Novartis Pharma AG, January 2019

Strategies for manufacturing

Hybrid process

Continuous upstream with batch downstream

Continuous upstream + capture, batch downstream

Fully Integrated Continuous Process

Konstantinov K.B. and Cooney C.L. – White Paper on Continuous Bioprocessing; J. of Pharmaceutical Sciences: 104:813–820, 2015

Technical Research & Development

Batch upstream with continuous downstream

U NOVARTIS

Scale out or numbering up instead of scale up

- Pilot scale becomes a final scale speed to market
- 500L 2000L BR vs 10.000L 25.000 L BR with same productivity
- Multiproduct facilities fit facility to product not vice versa
- Same process for clinical and final manufacturing
- Following market demands
- Flexibility / modularity
- Local manufacturing decentralization
- One time validation

Godawat R et al: End-to-end integrated fully continuous production of recombinant monoclonal antibodies. J Biotechnol. 2015; 213:13-9.

U NOVARTIS

Technical Research & Development

USP: Productivity comparison

- Much higher cell densities (10x)
- Higher product content per L of media
- Shorter time resulting in smaller bioreactors
- There is a need for more efficient DSP!

NOVARTIS

Continuous Bioprocessing and Perfusion: Wider Adoption Coming as Bioprocessing Matures By ERIC S. LANGER and RONALD A. RADER

Next-generation biopharmaceutical downstream process

Title	 Next-generation biopharmaceutical downstream process Acronym: nextBioPharmDSP 		
General	 Grant No.: 635557 4 year project (1st March 2015 - 28th February 2019) Webpage: www.nextbiopharmdsp.eu 		
Partners	 Industry: Lek Pharmaceuticals d.d. (Slovenia), Sandoz GmbH (Austria), Millipore SAS (France) Academia: University of Natural Resources and Life Sciences, Vienna (Austria), Karlsruhe Institute of Technology (Germany), National Institute of Chemistry (Slovenia) SME: National Systems srl (Italy) 		
Budget	 Total budget: 10,6 mio € EU funding: 8,4 mio € (70 % for industry, 100 % for academia) 		
Main goal	 Develop and implement a more efficient, cost-effective and environmentally friendly downstream process for the manufacture of monoclonal antibodies and biosimilars. 		

UNOVARTIS

Scheme of the proposed process

Scheme of the proposed process

Technical Research & Development

Final process

Establish fully connected disposable continuous DSP platform for biologics production.

nextBioPharmDSP Gap/Benefit analysis

FROM Current DSP standard

TO nextBioPharmDSP

NOVARTIS

High cost of DSP Quality	 Traditional large volume setups for biologics Obsolete technologies resulting in high COGS Poor intermediate stability of certain products 	Continuous processing	 Smaller investments in equipment and facility High volumetric productivity High equipment utilization Less footprint Elimination of intermediate tanks Elimination of intermediate hold steps - reduced risk of product degradation Decreased residence time in the process
Low flexibility of manufacturing	 Product dedicated facilities Stainless steel setup with low flexibility Limited possibilities for capacity expansion Delayed market entry due to 	Single use operation units	 Reduce bioburden risk - single use assemblies Smaller and mobile equipment - lower footprint Easy transfer to other manufacturing site No carry over issues
Speed to market	scale-up activities, product allocation strategies, lack of proper manufacturing options	Scale out instead of scale up	 Eliminated scale up activities Eliminated transfer risks Clinical production scale is final manufacturing scale

Establish fully connected disposable advanced DSP platform for biologics production.

Final process

Establish fully connected disposable continuous DSP platform for biologics production

Connected & Continuous processing

Innovative Technologies

Single-use operation units

Technical Research & Development

Connected DSP setup overview

U NOVARTIS

Technical Research & Development

Continuous capture performance

 Continuous multi-column chromatography with real time monitoring of product content

Impurity removal - HCP

- Efficient removal of HCP in different steps of DSP
 - Initial amount around 150.000 200.000 ppm

b NOVARTIS

Impurity removal - aggregates

 Efficient removal of impurities – CEX flow-through step for aggregate removal

U NOVARTIS

Main advantages

Acknowledgements

IEK član skupine Sandoz

a Sandoz company

Z University of Natural Resources and Life Sciences, Vienna

NSYS

www.nextbiopharmdsp.eu

Trademarks and logos used in this presentation are the property of companies collaborating in the nextBioPharmDSP project.

This project has received funding from the *European Union's Horizon 2020 research and innovation programme under grant agreement No 635557*

next

DSP

BioPharm